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The problem of the control and optimization of the rotatory-oscillatory motions of a two-mass system, generalizing the model 
of a spherical pendulum, is investigated. The system contains a carrier body (a base) rotating about a vertical axis, with a plane 
pendulum attached to it. Particular is given attention to solving the problem of controlling the relative motions of the pendulum 
by regulating the velocity at which the base rotates. The relative stationary states of the pendulum are defined and studied. Near- 
time-optimal feedback controls are constructed in the neighbourhood of stable states. Near-optimal controlled motions are 
suggested and investigated in both oscillatory and rotatory modes. Also, the problem of a transfer from one of these modes to 
the other is considered. The qualitative properties of the controlled systems are established and analysed. © 2000 Elsevier Science 
Ltd. All rights reserved. 

Numerous publications have been devoted to working out analytical and computational methods of 
solving classes of problems of the optimal and near-optimal control of motions in "pendulum-type" 
systems (see the monographs [1-3] and their bibliographies). Rotatory-oscillatory motions may form 
a basis of some process and/or constitute perturbations in the control of the motions of complex 
dynamical systems. Among these are manipulation robots, including those of the recuperation type, 
aircraft with elastic components of substantial length, crane systems and helicopters transporting swinging 
loads on flexible suspensions of various kinds, etc. Among the more frequently employed controls are 
inertial exitations (forces and moments of reaction forces) caused by controlled displacements of a 
relative equilibrium position of the rotatory-oscillatory system. Below we will investigate problems of 
the dynamics and control of the motions of a plane pendulum attached to a base rotating about a vertical 
axis. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Consider the motions of a two-mass system consisting of a rigid body (base) with an attached pendulum 
(see Fig. 1). The body can rotate freely about the vertical Z axis of an inertial system of coordinates 
XYZ. The pendulum (or rotator) performs relative plane oscillations or rotations about an axis passing 
through the vertical Z axis and orthogonal to it. 

Expressions for the kinetic energy K and potential energy 1-I of the system can be calculated by standard 
methods, and may then be used to write down Lagrange's equations of motion 

K = ~ / (0 )~02  + ~ m l 2 0  2 + mtd(pOcosO,  FI = m g l ( l  - cos0 )  

(d / dt)l/(0)tp + m/d0cos 01 = M~0, /(0) = / 0 + m(d 2 + l 2 sin 2 0) 

m120 + mld~ cos 0 - ml2 (p 2 sin 0 cos0 + mgl sin 0 = M o 

(1.1) 

where ~ is the angle of rotation of the rigid body and I0 is its moment of inertia, 0 is the angular variable 
of the pendulum, of mass m and length l, and d is the distance from the axis of rotation of the base to 
the suspension point of the pendulum (the "arm"). The function I(0) has the meaning of the reduced 
instantaneous moment of inertia of the system about the Z axis, it satisfies the conditions I0 + m d  2 <~ 
I(0)  <~ <~ I 0 + m ( d  2 + 12). In the special case where I 0 = 0 and d = 0 we obtain the well-known classical 
model of a spherical pendulum. By (1.1), the system is subject to torques M, and Mo belonging to some 
class of functions. 

IfM~ - 0, the angular momentum about the vertical Z axis is conserved, that is, system (1.1) has an 
area integral 
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Fig. 1. 

/ (O)(0 + mldO cos 0 = c = c o n s t  ( 1 . 2 )  

for any Me, as follows from the first equation. Equation (1.2) can be used to investigate the second 
equation. In particular, irMa = A(0) + B(0) ~2, it can be completely integrated analytically, since it 
can be reduced to a Bernoulli-type equation 

d(g(o)e)+D(O)O 2 +F(O)=0  
(1.3) 

If the torque M0 is such that D(0) = - 1/2 J'(0), F(0) = W'(0), where J and W are 2~r-periodic functions 
of 0, then (1.3) is the equation of a generalized pendulum [2, 3]. It admits of an energy integral 

2 E = 1/2 J0 + W, where J and W (the generalized moment of inertia and potential energy, respectively) 
are functions of 0 and c which are known from (1.1) and (1.2). 

The torques My and Me may be regarded as controls to be chosen so as to steer system (1.1) to some 
fixed phase state, and minimize some performance index taking into account constraints of various types. 
With this general formulation of the optimal control problem one cannot obtain any really meaningful 
results. We will therefore restrict the formulation by assuming that one of the generalized coordinates, 
q~ or 0, varies in a prescribed way, considering their derivatives as control functions and assuming that 
there are no external torques Me or M,.  This yields restricted formulations of control problems for the 
variables 0 or ~, where the control is implemented by kinematic (inertial) means. Thus, if the variable 
0 is taken as the control v, then, My ---- 0, we have a family of controlled systems of the following form 
(c is the parameter of the family) 

(p= I-I(O)(c-mMv cos0), 0 = v ,  v • V (1.4) 

The case c = 0 is of special interest. For system (1.4), one can formulate problems of varying the 
variables q~ and 0 within certain limits. The control v can be implemented by an electric motor with a 
reduction gear of high gear ratio, located at the pendulum joint [2, 3]. 

We will consider the basic and much less trivial formulation of the problem in which the variable ~ is 
controlled kinematically and 0 varies as in (1.1) with Me ~ 0. We then have a control system of the form 

- o32 sin 0 cos 0 + v 2 sin 0 = -×u cos 0 (1.5) 

(_o=u, (p=o3 (v2=g]l, ×=d/l) 

According to (1.5), the angular acceleration ~6 = u of rotation of the base is taken to be the control 
variable. The efficiency of this control for 0 strongly depends on ×-- the normalized length of the 
arm d. It should be noted that the variable ~p does not occur in Eqs (1.5). This enables us to pose a 



Control of the relative motions of a pendulum on a rotating base 199 

number of control problems for the relative state of the pendulum, ignoring the angular orientation of 
the body. For applications it is very important to investigate the relative equilibrium positions 0e of the 
pendulum at u = 0 (to = const), and to formulate and solve the optimal control problem for motions 
of the pendulum in the neighbourhood of the above-mentioned stationary points of the system 0 = 0c 

(toE), ~ = 0, ~b = to, which correspond to stable states; see below. 

2. D E T E R M I N A T I O N  AND I N V E S T I G A T I O N  OF THE R E L A T I V E  
E Q U I L I B R I U M  P O S I T I O N S  OF THE P E N D U L U M  

In order to reduce the number of parameters in system (1.5), we will introduce a non-dimensional time 
variable t' = vt and the change variables: to' = to/v, u'  = u/a) 2. Omitting primes for brevity, we obtain 
equations with v = 1. Let us consider the case in which the angular velocity is kept constant, qb = to 
(u - 0). Then the first equation for 0 in (1.5) admits of the energy integral E: 

E=~O2+U(O, oI2),-rc<0~<n (mod2~:), 0~<02, ¢02<o,, 

U(0,to2) = l - c o s 0 - ~ t o 2 s i n 2 0 ,  - * ~ < U ~  < 2 ,  m i n a U ~  < E < , ~  
(2.1) 

where U is the potential energy of oscillations or rotations of the pendulum about the regularly rotating 
base. Since the function U is 2~r-periodic with respect to 0 and symmetric about 0 = 0, it will suffice to 
represent it in the interval 0 ~ 0 ~< ~r. Figure 2 illustrates the function U(0) for different to values. It 
follows from the expression for U in (2.1) that for 0 ~< to2 ~< 1 the function has a unique minimum and 
maximum: 

min 0 U(0, to 2 ) = U(O, to2 ) _ 0, max o U(0, to2) = U(rc, to2 ) __ 2 

U'(0, to2)=0, U"(O,o)2)=l-to 2, U"(0 ,1 )=0  

Utv(O,I)= 3; U'fr¢,to2)=0, U"(~, to2)=-l - to  2, 0 ~ < t o 2 ~ l  

(2.2) 

It can be verified by differentiation that U > 0 in a small neighbourhood of the singular point 
0e = 0 (0 4: 0), which is a centre, if to2 < 1; U < 2 if 0 ~ rr in a small neighbourhood of the singular 
point 0~ = "tr, which is a saddle point, for all 0 ~< to2 ~< 1, that is, the minimum and maximum (2,2) are 

t/ 

-2 

-4 
Fig. 2. 
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strict. Thus, if the body is set in motion at a velocity ~o =to, to2 ~< 1 (i.e. to2 ~< a:2), provided that 0 = 
0 = 0, the system will perform stable rotation as a whole relative to the variables 6, 0, 0; the relative 
equilibrium position 0~ = "rr, 0 = 0 will be exponentially unstable: the variation will be 

50 - 500 exp(~/1 + co ~- t) 

Let us Consider the relative equilibrium positions when to2 > 1. that is, toz > v2 in dimensional 
variables. It than follows from an analysis of the function U(0, J )  of (2.1) that the stable (lower) 
equilibrium position 0e = 0 splits into two equilibrium: 0e = 0 and 0~ = 0, = arccosto-2; the equilibrium 
0e = ~r is preserved (see Fig. 2). Simple analysis indicates that the quantities 0~ = 0, 1r (saddle points) 
correspond to strict maxima, while 0e = 0, (a centre point) corresponds to a strict minimum, and 
moreover 

U, (~2) = U(0,, co 2 ) = - ~ (o~ 2 + o) -2 ) + 1 < 0, U"(O,, to 2 ) = ¢.o 2 - co -2 > 0 (2.3) 

Analogous statements hold for uniform rotation of the system as a whole in the state ~o = to, ~) = 0, 
0e = 0*(to2), 0, ~r. Note that the minimum function satisfies the relation U,(to 2) ~ - 1 / 2 o  2 if to2 >> 1, 
that is, it decreases fairly rapidly as Ito I increases where 0,(to z) < ~r/2, 0, ---> ~r/2, as to2 ___> ~ ,  but U'(,rr/2, 
to2) = 1 irrespective of to. 

We will now investigate the orbits in the phase plane (0, 0) for different values of to2 and E in 
accordance with (2.1). Figure 3 illustrates fragments of phase orbits for to = 3 and different E values. 
Owing to symmetry, we can confine our attention to the first quadrant. We will first consider the simple 
situation E > 2, corresponding to the mode of relative rotations; we have 

b = +TI(O, [o 2, E), 11(0, o~ 2, E) = ~ - [ E  - U(0, co 2 )1~, E > 2 

mine rl = ~I2(E- 2) ½, maxe rl = 2 ~ ,  0 ~< o~ 2 ~< I (2.4) 

minerl=~/2-(E-2)  ½, e x t r o r l = ~ ,  m a x e r l = ~ J 2 [ E - I + ~ ( ( o  2 +o)-2)1'/-,o) 2 > I 

When E > 2 the pendulum performs monotonic relative rotations at a positive velocity 0 = -q or 

o e.  ~-/e e ~- 

Fig. 3. 
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negative velocity 0 = --q whose magnitude oscillates between certain limits defined by (2.4) (see 
Fig. 3). In the limit as E $ 2 we obtain a separatrix, for values of 0 ~< to 2 ~< 1 it corresponds qualitatively 
to the classical case to 2 = 0 - a pendulum with fixed axis [1-3]. Significant differences are observed 
when to 2 > 1: a local minimum appears at 0 = 0 and a maximum at 0 = 0. (t~ 2) (0. ~ "tr/2, to 2 -> 1). 
Their values can be computed by (2.4); when E = 2 and to 2 >> 1 we have an asymptotic form max0"q - 
[to [ (see Fig. 3). 

We will now investigate the phase orbits in oscillatory motion, using formulae (2.4) for 0, "rl with 
E < 2. The nature of the oscillations depends essentially on the values of the parameters to 2 and E. We 
will first consider the case of a system qualitatively similar to the classical pendulum (see above). The 
phase orbits and turning points are defined analytically in the form 

O=+rl(O,(02,E), 0-~<0~<0 +, 0 - = _ O  +, 0~<E<2,  0~<(02~<1 

0 + =O+((02,E)=arccosz((02,E), 0<~ 0 + >n,  - n < 0 -  ~ 0 (2.5) 

z = (0 -2 (1 - [(1 - (02)2 + 2(02E]½ ), _ 1 > z ~< I 

By (2.5), the relative oscillations of the pendulum occur within symmetrical limits 0 ±. The unique 
stationary point, a centre point, 0e = 0, corresponds to E = 0. The orbits are convex either upward 
(0 = -q) or downward (6 = - 'q)  (see Fig. 3). 

A somewhat more complicated phase portrait is observed when to 2 > 1. If  0 ~ E < 2, formulae 
(2.5) remain true, but a qualitative change occurs in the behaviour of the orbits: ~ is convex upward 
(concave) at the ends of the interval (0-, 0 +) and convex downward in the middle part of the interval. 
In the limit as E $ 0 the system has a saddle point and the phase orbit has a shape resembling the 
symbol oo. Naturally, the oscillations of the pendulum for 0 < E < 2 occur within the symmetrical limits 
0 ± according to formulae (2.5) (see Fig. 3). 

I f E  < 0, the domain of oscillations splits symmetrically into two (see Figs 2 and 3). The oscillations 
of the pendulum may occur within the limits 0 E [0-, 0 ~] C (0, ~r) or 0 ~ [0-, 0 +] C (-~r, 0). To fix 
our ideas, let us consider the case of positive limits. The formulae of type (2.5) for the phase orbit and 
stationary points take the form 

0=___1"1(0,(02,E), 0 - ~ 0 ~ < 0  +, O>E~U,((02)=I-I/~2((02+t.o-Z)~O 

O+-((02,E)=arccoszr'((02,E), 0 < 0 -  <n/2, O- <0"  <~  (2.6) 

z ± = (0-2(1 +[(1 _(02)2 + 2(02E]~), _ 1 < z < 1 

The stationary point 0. for a fixed value ofo~, I0,1 > 1, is defined by (2.3) and (2.6): 0.(to 2) = arccosto -2, 
and 0. $ "rr/2 as to 2 ~ 0% corresponding to mechanical considerations. The oscillations occur within limits 
0- ~< 0 ~ 0 + which are asymmetrical about 0e = 0,; this follows from formulae (2.6) for 0., 0 ±. It is 
interesting to observe that 0 < 0- < "tr/2, 0 < 0 + < "rr, but 0 + -~ "tr/2. We have thus completed our 
investigation of the phase portrait of relative oscillations of the pendulum when the base is rotating 
uniformly, which will be needed in what follows. 

The previous analysis implies a natural and non-trivial formulation of the optimal control problem 
for system (1.5): to bring the pendulum to a state of relative stable equilibrium 0~ corresponding to a 
fixed velocity of rotation o~ of the base. The initial state 0 °, (~0, 000 of the system may be arbitrary; the 
control---the angular acceleration of the base--is taken from a given class of functions G = u E {U}, 
such as piecewise-continuous bounded functions I u I ~< u0, and the performance index is the time of 
the process [1-4]. It is of some interest to bring the pendulum to a state of rotation E > 2 or to a state 
of oscillation with fixed total energy E: U.(to ~) < E < 2. The construction of exact solutions of such 
optimal control problems for non-linear oscillatory systems of type (1.4), (1.5) meets considerable 
difficulties. We therefore propose the use of approximate analytical methods of perturbation theory, 
which involve introducing a small parameter [1-3]. 

3. A P P R O X I M A T E  I N V E S T I G A T I O N  OF 
" I N E R T I A L  C O N T R O L "  P R O B L E M S  

Let us consider the restricted formulations of problems of control by kinematic adjustment of one of 
the angular variables 0 or ~o, as formulated in Sections 1 and 2. 
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Rota t ion  o f  the base. Let us investigate the possibility of controlling the rotations of the rigid body 
(the base), as described by Eqs. (1.4), by varying the angular velocity of the pendulum. The time-optimal 
problem for system (1.4) is 

~(0)=tp °, 0(0)=0 °, t p ( t f ) = t p / ( m o d 2 n ) ,  t.f ---->min v, Iv I~<u0 (3.1) 

The system is controllable in the sense of (3.1) if c ~ 0; in the limiting case of c = 0 it is not always 
controllable, since by (1.4) the variables to and 0 satisfy the following relation for any ~ * 0: 

tp - 90 = -×a  -I (arctg s - arctg s o ), a = ( !  o I(ml 2) + ×2)y2, s = a-t sin 0 (3.2) 

where we can put tO o = 0 without loss of generality. Since the orientation tO/is defined by (3.1) to within 
2"rr, it follows from (3.2) that the condition for controllability is 

ItP I I ~< 2 ×a-I arctg a -l (I ~P/I < n) (3.3) 

This expression has an obvious interpretation in terms of mechanics. We note only that the right- 
hand side of (3.3) is bounded by 1r for all values of/0, m l  2, m d  2, since xa - 1 ~ I and a -  1 < oo; the limiting 
value is reached if I0, d -~ 0, that is, we have a spherical pendulum. In addition, when the required 
orientation tof is reached the body will remain in that angular position if we take ~ ~- 0 for t > t/. It is 
also interesting to observe that condition (3.3) does not depend on v0. A time-optimal control ~*, in 
the open-loop and feedback forms, can be constructed by carrying out the following elementary 
operations 

ts + s o - tg ~ f  00 
f v * (t)dt = +v 0t7 = arcsin a 
o • I + s o tg ~/Y (3 .4 )  

0 < t~. = min(t~,t.7), s o = a -l sin 0 °, V t = tpfa / × 

If the controllability condition (3.3) is satisfied, problem (3.4) has a solution. 
If c ~ 0, system (1.4), as already noted, is controllable in the sense of (3.1). If  e = Ic l (mldvo)  -1 
1, the solution of the problem in the general case (when condition (3.3) holds with a safety margin) 

is close to that described above. It can be constructed approximately by methods of perturbation theory 
[1-3] with a small parameter e. 

If the control applied to the body is small, that is, e- 1 = mld~o ] c ] - 1 . ~  1, but Ix = ~(I0 + m d  2) ] c ] - 1 
1, then the approximate methods of optimal control developed for regularly perturbed systems [1-3] 

are also applicable. In the first approximation, the control v* must lead to a decrease in I(0), that is, 
to the minimization of sinE0; this gives the result ~* ~ -~s in20 .  

But if the control v is also small: Ix - e "~ 1, then it is natural to apply locally optimal control laws 
[1], such as 

v * = -v 0 sign[(tp f - q~)cos0+ k20] (q~f - cp,0;mod2~) (3.5) 

If k 2 = 0, expression (3.5) for v* corresponds to a locally optimal mode in which the functional 
f 2 2 J ,  = (to - toflf)) is minimized, while i fk  > 0 it corresponds to the minimization ofJ~ + k20E(tf). The 

parameter k ~ in (3.5) is a weighting factor, selected by numerical experimentation. 
The case when e - 1 but Ix >> i corresponds to an asymptotically long time interval t / ~  e-lVo 1. In 

the slow time x one has virtually discontinuous (Bang-bang) variation of the angular variable 0, since 
dO/d'~ = ~]c ] -1(I0 + m d  2) >> 1. Approximate control is reduced to bringing the pendulum to the angular 
position 0 = 0, ~ in a relatively short time Ax ~< ('rr/2) [c] [~0(I0 + rodE)] -1 "~ 1; one then puts ~ = 0. 
The body plus pendulum rotates at maximum velocity ff ~ c( I  o + rod2) -1, but until the required angular 
velocity q~ (mod 2~r) is reached the rotation velocity may be reduced by the quantity mld~o or made 
equal to zero if [c] ~< m l d v  o. 

The complete investigation of the general case, when ]c](Iovo) -1 ~ m l d l o  1 ~ 1, meets difficulties. 
Acceptable results in that case can be obtained by using a "penalty" method analogous to (3.5) or by 
numerical methods. 

Control o f  the oscillations o f  the pendulurn.  On the basis of the analysis in Section 2 of the phase portrait 
of the oscillations of the pendulum (E < 2), we will investigate a number of control problems for motions 
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in the neighbourhood of stable relative equilibrium positions. By (2.5), if 0 ~< to2 ~< 1, then 0 = 0 = 0 
is a stable position. For effective investigation of the control process on the basis of the non-dimensional 
equations (1.5), we introduce a small parameter e- characterizing the neighbourhood of the stationary 
point under consideration and the smallness of the control, so that it becomes possible to take into 
account the non-linear terms of the equation in the following way [2, 3] 

0=-,/~et, et h to=co +4-~'t, ~'~!, 6~ e-~u, ~ " - * = 0 ~ C 0  <1  

/2 + ~2t~ = -e-f tX 3 - e-×u + O(e- 2 ), f - ~ (-1 + 400 .2 + 8-v/'~to'T) 

;[ = r.u, ul <~ u <~ u 2, ul. 2 - 1, ~2 = 1 - co *s - 2~f~to*y - eT  2 > 0 

(3.6) 

Furthermore, we assume that x ,  ~-~2 ~ 1. We will formulate the problem of the time-optimal variation 
of the amplitude of small relative oscillations of the pendulum and the angular velocity of rotation of 
the base. To reduce Eqs (3.6) to the standard form of a controlled system with rotating phase, we make 
the change of variables (a, &) ~ (a, +) [1-3] and obtain 

cz=as in~ ,  d t=a~cos~ t ,  ~ - y  ( a , ~ , y ~ l )  

t~ = - (e- / f~)(×u + f (y ,  to*, e-) a3 s in 3 ~)  cos q - a (~  / l)) cos 2 ~ (3.7) 

9=eu, v=f~+o(e), ~ = o ( e -  ~ )  

The performance index of the control, characterizing the optimal response time, as well as the initial 
and final conditions, are taken as follows: 

t t. ---) min,, u I ~< u ~ u 2, a(0) = a °, y(0) = T °, a( t t . )  = a y ,  T(t/) = T / (3.8) 

In particular, if a f = 0, the pendulum is brought to a state of relative equilibrium O f corresponding 
to the base rotating at velocity to / = to + ,~~/L if ~//= 0, the final velocity is toy = to. We can assume, 
without loss of generality, that a f = "yf --- 0. All approximate solution of problem (3.7), (3.8) is constructed 
using the maximum principle [4] and the method of averaging [5, 6]. Using a.symptotic methods of optimal 
control [1-3] we obtain the following expressions, with relative error O('4e-) in terms of the functional 
and the orbit (ignoring O(e-3/2): 

u* = uj + u s + u s - uj ~'sign[Aa(k - cos ~)], Aa # 0, I k I< 1 

2 2 [ s i g n  AT, Aa = 0,  I k I~  > I 

[arcsin k - 0 ] ×A~ r~ u I + u 2 
k = a r g k /  X,  k =  , o . . . .  , ~o =( i - to*2)  ½ (3.9) 

J [ f~0Aa 2 u s - u~ 

x-~f~o I Aa  I +AT 
t f = 

e (re / 2)(uz + u2)  + (u2 - ul )((1 - k 2)~A _ arcsin k ) '  

a ( t ) = a  ° + A a  t ,  T(t )=T°+Ay t 
t f t.f 

~.~ argx(o + arcsin X-t +(X2 _ 1)~), o<> -T-n / 2, k ( -£ , -o )  = -k(L,a)  

To construct a time-optimal control in the open-loop or feedback form, according to (3.9), one has 
to solve a transcendental equation in k = k(h, tr) using numerical or approximate analytical methods. 
A graphical solution is shown in Fig. 4. Note that the parameter h is determined by the initial (current) 
values of the phase variables a and y. The equation is solvable~in fact, uniquely~for  all h if ] cr I < 
"rr/2, that is, Ul < 0, u2 > 0, a condition which is usually satisfied in real control systems; usually, cr = 
0(Ul = -u2). If I, 1 < that is, Ul,2 > 0, ul,2 < 0, the solution (if it exists) is not unique and one has 
to choose one of the roots kl,2 that minimize t/(see (3.9) and the curve cr = - 2  in Fig. 4). 

Thus, by algorithm (3.9), a weak control eu will steer system (3.6) from an arbitrary point a °, y° into 
the "vre-neighbourhood of the point a f, ~/f in an asymptotically 1 long optimal time t f  ~ e - - .  The phase 
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7 i , 

0 2 'l X 

-1 

-2 

Fig. 4. 

point of the original system (1.5), under the control & = E3/2u, will be transferred from the ~f~- 
neighbourhood of  the required value 

0: = 0, + -~(~J, o/= V~e/, co/= co* + V-~'t: 

to an e-neighbourhood. A solution analogous to (3.9) is obtained in the formulation of the control 
problem with the following scales introduced 

0=E~,  co=co*+£y, th=£  

This problem is equivalent to assuming (3.6) and representing tb = eu with the transformation 
q-e --~ e; however, with the problem normalized in this way, non-linear terms O(ot 3) are not taken into 
consideration [2, 3]. 

We will now consider an optimal control problem for co 2 > 1, subject to assumptions similar to (3.6) 
but with cb = ~Zu, u - 1. For convenience, we transform ~ ~ ~ (see above). This yields a quasi-linear 
controlled system of type (3.7) 

6 + ~20t = ef(0t, y) - I~×u / CO*2, ~ = eu, ~2 = ~.2 _ i / co*2 

f =  ( ~  sin 0, -co*2 sin 20 . )5  2 + 2co*y cos 20,, cos0.  = 1 /co,2 (3,10) 

The approximate solution of the time-optimal problem (3.8) for system (3.10), with relative error 
O(~), is given by formulae (3.9), in which we substitute 

~'-~0 .--> &"~ = (CO*2 - i / CO*2 ) ~  ' X --.). ~,, / CO "2 

(see the formulae for h and tf). Note that the occurrence of non-linear terms efin (3.6), (3.7) and (3.10) 
does not affect the solution in the first approximation, since they disappear on averaging. 

Control of the oscillations of the pendulum for rapid rotations of the base. Let us investigate an 
analogous problem, in the case where the rigid body is rotating at an asymptotically large angular velocity: 
o~ 2 >> 1, that is, to 2 >> v 2 = g/l in dimensional variables. As established in Section 2, the stable stationary 

*2 points are 0, ~ at/2, since 0° = 1/to by (2.3). We will investigate the oscillations of the pendulum in a 
small neighbourhood of the equilibrium position 0e = 0.(tO*2); to within an error O(1/~ 4), we 
have 

*2 * e = o , + c x / c o  , co=~co , ~ - 1 ,  co*%>l, x - i  

~+~2(z : - (×/~0"2)(! - (x)u,  ~ = u / c o  .2, u ~ I (3.11) 

(the dots denote differentiation with respect to the fast phase x of rotations of the base: ~ = ~0*t). For 
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a weakly controllable (e = 1/to .2 ~ 1) non-linear system, we can use asymptotic methods [1-3] to construct 
an approximate solution, after reducing the system to standard form with rotating phase, as in the case 
of (3.7). The strong non-linearity of system (3.11) is due to the essential dependence of the oscillation 
frequency £2 = ~ on the controlled slow variable ~ [2, 3]. Introducing the small parameter e = 1/to .2 for 
convenience and changing from variables (or, et') to (a, t~), we obtain relations for the controlled system 
in standard form and corresponding initial and final conditions: 

~ = a s i n ¥ ,  ~" =a~cos~ ,  ~t/" =~+O(e)  

a" = - e ~ - I h ( a , ~ ) u ,  h =-- ×(I - a s i n  ~ ) c o s ~ + a c o s  2 ¥,  a(0) = a  ° > 0 (3.12) 

~" =eu, ~(o)=~° =co°/co ", u=½u++½u-w, u, <-u<~u2 

a(x l - )=a1">~O , ~( '¢ f )=~/ ;  x / = m i n , . ,  Iwl~<l 

When a f = 0, ~f = 1, the pendulum is brought to the state 0e = 0.(co*). Application of the asymptotic 
methods of [1-3] to problem (3.2) meets with considerable difficulties, particularly in carrying out the 
averaging operation. To solve this problem one resort to numerical methods for specific values of e, K, 
a q, ~ , ul,2. One may also use approximate quasi-optimal control methods corresponding to various 
relationships among the parameters. 

For example, in the case of a strong inequality 

I a a  I ~ I a~ I (aa = at-a°, a~ = ~t_~0) 

it is natural at the first stage of the control 0 ~< x ~< x. to set u. = 1/2u + + 1 / 2 u -  sign A~, which in a 
time x. = la l I u. 1-1 will bring system (3.12) to the state ~ = ~f; the quantity a will then vary from 
a ° to a.  = a°(~°/~51/2, that is, it will be multiplied by (~ °/~f) 1/2. At the fmal stage x. < "~ ~< zf, one applies 
periodic discontinuous control with zero mean, for example, of the form 

uf = u0(sign h - (sign h))sign((I h I) - (h)(sign h)) sign(a - a -r) 

(sign h) = (2 / x)(n - arccos z ') ,  z" = -2×a(a 2 + ×2)-1 (3.13) 

~/2~<arccosz *~<g, ( h ) = a / 2 ,  u o = m i n ( l u  tl,uz) 

Application of the cqntrol uf (3.13) over the interval x. < x ~< xf makes the value of a vary form a* 
to the required value a% obeying the equation 

a" = - e ( u  o I ~Y)  I (I h I) - (sign h)(h)  I sign (a - a y )  (3.14) 

Since uf has zero mean as a function of ~, this implies ~(x) = ~f + O(e). The coefficient of sign(a - 
a r) in (3.14) is strictly negative and for K > 0 it has an upper bound. Hence, in a finite time 

x f - x ,  - I  a ,  - a -t I ~f(Eu0h/) -I 

the amplitude a will take the given value a f. The coefficient h f  is positive for K > 0 and in the case of 
small a we have the estimate h i  = 2 K/~r + O(a) .  T h e  expression (]h ]) may be obtained in explicit 
analytical form by quadratures, on the basis of the known roots ~i of the function h, but it is too 
cumbersome to be presented here. In addition, the right-hand side of Eq. (3.14) depends only on a, 
this is, it can be integrated by quadratures. 

Note that the control made (3.13), (3.14) for system (3.12) is also applicable with general assumptions 
concerning the quantities Aa and At. However, for large [ Aa [ it may lead to a very inferior performance 
index zf, since the presence of the initial stage, in which the quantity ~ decreases substantially when a 
varies in the prescribed manner, may prove to be more effective, the purpose of this variation of ~ is 
to increase the coefficient of the control u for a. This mode can also contain three stages: (1) a decrease 
in 6; (2) the required variation of the variable a, and (3) bringing the variable ~ to the value ~f. These 
stages are implemented separately by a procedure analogous to (3.13), (3.14). Note that decreasing 

t h d a a -1/2 t e the parameter ~ leads to an increase in he amp "tu e , ~ ~ , bu the ffectiveness of varying 
a increases as ~-1 (see (3.12)), which leads to a considerable gain in time if [Aa I >> JAil. 

Analysis of Eqs (3.12) indicates that 
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a" = - e × ~ - t u c o s ~ + O ( e a ) ,  a ~ l ,  × - 1 ,  ~" =eu  
(3.15) 

a ° = -e~-lua(cos gt - ×sin lit)cos ~ + O(e×), × - I ,~a 

Controlled systems (3.15) can also tackled by the previously mentioned asymptotic methods for 
constructing an approximate optimal control [1-3]. To summarize the foregoing arguments: we have 
constructed precision controls that bring the pendulum to the required state. Along with the time- 
response functional, one can also consider other performance indices, constraints and final conditions 
[1-31. 

Bringing the pendu lum into the neighbourhood o f  a prescribed state. T h e  above modes of high-precision 
control in a small neighbourhood of a prescribed state assume that the phase point of the system has 
first been brought into the relevant domain of values (see (3.6) and (3.11)). This controlled process is 
conveniently realized by transforming to "energy-phase" variables (E, t~). Differentiating the 
expression for E (2.1) along the orbits of Eqs (1.5), we obtain 

/~ = H(0,1~,to)u, H - ×t~cos0 + tosin 2 0, ~ = u (3.16) 

The equation for the phase • is determined by quadratures using standard techniques [2, 3]; its explicit 
form is not essential for what follows. In the oscillatory mode U,(to 2) ~ E ~< 2 (see (2.3)), the stationary 
point 6 = 0, 0e = 0 or 0e = 0 , ( J )  corresponds t o E ,  = 0 o r E ,  = U,(to z) (for toz ~< 1 or to2 > 1). System 
(3.16), (1.5) can be steered to a neighbourhood of the stationary point by a locally optimal control [1] 
based on the "penalty" method 

J[u] = (E, - E ( T ) )  2 + k2(~, - to(T))  2 --4 min,,, u I ~< u ~< u 2 (3.17) 

u* = ~ u  ÷ + ~ u -  sign[(E, - E)H(0,0,to) + k2(to, - to)]  

where k 2 is a weighting factor and T is an explicitly or indirectly given sufficiently long time for steering 
the system into the neighbourhood of the prescribed value of E , ,  co,. It is assumed that the energy E 
is computed from (2.1) on the basis of measurements of the quantities 0, 0, to. The coefficient k 2 ~ 1 is 
chosen by mathematical modelling of the control process after substituting the function u* (3.17) into 
system (1.5). One can use the control u* without taking into account an additional relationship between 
E ,  and to,, for example, one can bring the pendulum to a state of  relative rotation: E ,  > 2. Conversely, 
by (3.17), the pendulum is brought from a rotational mode to a certain neighbourhood of the desired 
state of  oscillations. Controlled oscillations and rotations with u - e may be investigated using the 
averaging method for Eq. (3.16). 

Control o f  the rotations o f  the pendulum.  T h e  asymptotic approach makes it comparatively easy to 
investigate relative controlled rotations of the pendulum in the case rapid rotations 

161~ I to l~ l  

We will briefly present a suitable procedure for introducing a small parameter and constructing a 
controlled system of standard form. Let 0 = Act, where A ~> 1 is a constant characterizing the velocity 
of  rotations in dimensionless time t' = vt, for example A = 0, and o" ~ 1 is an unknown variable. Then, 
introducing a new argument x = At ' - - the  fast phase--we reduce Eqs. (1.5) (with e = 1) to the desired 
form [2, 3] 

t~" = -~txu cos 0 - ~t sin 0 + ~tto 2 sin 0 cos 0 (3.18) 

0"=t~ ,  to '=p .u ,  ut<~u<~u 2, l . t=A-I,~l  

where ~ has the meaning of a small parameter, 0 is the phase, and the control u - 1; the dot denotes 
differentiation with respect to x. 

Considering the controlled system (3.18), one can formulate and approximately solve a time-optimal 
control problem of type (3.7) with the following changes in the notation 

t ---~ "~, t f --4 "c f , E --, ~t, a ---) t~, ),--)co, ~---~1 

A solution with relative error O(Ix) is given by formulae (3.9) and the graphs of Fig. 4. The optimal 
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control u* (0, tr, to) brings the phase point of system (3.18) into a ix-neighbourhood of the desired value 
(or f, J )  in the interval 0 ~< x ~< zf - - 1 .  The corresponding solution differs by a small quantity O(~) 
from the exact solution with respect to the slow variable and the time of the process. 

Control of the relative oscillations and rotations of the pendulum in the case of zero "arm" An important 
quantity in the control problems investigated above was K (K - 1). If  K ~ 1, the problems may be 
formulated differently in the limit when ~: = 0. To that end, we express the non-dimensionalized equations 
of motion (1.5) in the form 

0+s in0=Eus in0cos0 ,  0 4 u ~  <1,  e=to2"~l  (3.19) 

( p = ~ , - I < < - v  <~1, u=u 2, ~(mod2r0 

According to Eqs (3.19), it is assumed that the velocity of rotation of the base changes virtually 
instantaneously and may take values within the limits 

-COo (0 = COo, ¢o0 = 4 /  

Considering system (3.19), one can formulate and solve problems in which the energy of relative 
oscillations and/or rotations of the pendulum and the orientation of the base are to be varied in an 
optimal manner over an asymptotically long time interval. Discontinuous changes in the velocity of 
rotation of the base may be implemented by an electric motor. 

Let us reduce Eq. (3.19) for 0 to the standard form [1-3] 

/~ = eu§sin0cos0,  ~' 2n = + euF(E, O) 
T(E) 

(3.20) , d O  
e = ±622 -cos0/-- -i,  r(e) = 6 =_+45(e+cosO)  

The explicit form of the function F is unimportant. Let us consider the problem of the time-optimal 
variation of the energy E ignoring changes in the phase • according to (3.20) and in the angle q~ (3.19). 
Then, after changing E to the desired value E / with error O(~) in time t f -  8-1, by applying the constant 
control v = +_. 1, u = 1, the angular variable can also be brought to the desired value 9f(mod 2~r) in 
a relatively short time Vtf ~ e -n/2, in such a way that 

E = E /  +O(e), t / < t < ~ t y + A t f  

The optimal feedback control u*, the optimal variation of E and other characteristics have the form 

u" = ~ + ~ sign ((} sin 0 cos 0) sign (E 1 - E) 

dE/  dx = H(E)sign(E / - E), x =et 

I It~sin 0cos01 dt -- I sin 0cos01 sign 0d0 (3.21) 
/-/(E) = 0 

z = sign(E / - E ~) I H({) '  "cy = 

The analytical expressions for the functions H(E) and T(E) depend on the mode of motion of the 
pendulum. In oscillatory or rotatory motion, we ha,,e the following explicit representations for H~¢ and 
Tv,r [1-3] 

Ho (E) = (14" E2) /T  u (E), 0 ~ E, T~ = 4K(k v ), /%2 = ~ ( E +  1), ] E 1< I (3.22) 

Hr(E)=IITr(E),  Tr(E)=2krg(kr), k2= 2 / ( e+ l ) ,  E > I  

where K(k) is the complete elliptic integral of the first kind with modulus k, k 2 < 1. 
It follows from (3.22) that the effectiveness of the control u* in rotary motion increases as E increases, 

since 
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Tr(E ) = 2 r ~ / 2 ~ ,  E---> ,,o 

In oscillatory motion ( - 1  < E < 1), the effectiveness of the control decreases as E ,1, - 1 ,  namely: 
E" ~ ( -  1 + E)/'rr, which leads to an unlimited increase in the time for "entering" the state of "leaving" 
the state of rest of the pendulum (E f'° = - 1), in accordance with the estimate 1: - I ln (E + 1) I- The 
effectiveness also decreases as E q' 1, since T~ ~ ~ in accordance with the estimate 

T~ = 4 ln(2-~ / 41 - E) -I  In(I - E) I 

However, this logarithmic singularity is integrable, so that one has a finite time for "crossing" the 
separatric (E = 1). Similarly, if E decreases in oscillatory motion (E > 1), passage through the value 
E = 1 also requires a finite time, since the expression for Tr(E) has an analogous logarithmic asymptotic 
form. 

Although the motions are no longer periodic near the separatrices and this makes it difficult to use 
the averaging method, the error thus incurred, due to the "scattering property" of the separatrix, implies 
an asymptotically small error  O(e [ln e I ) [7], which is acceptable in the sense of the required accuracy, 
provided that e > 0 is sufficiently small. 
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